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Abstract. The density, current, and spin response functions are investigated above the critical tempera-
ture Tc for a system of three-dimensional fermions interacting via an attractive short-range potential, as the
strength of this potential is varied from weak to strong coupling. In the strong-coupling (bosonic) limit,
we identify the dominant diagrammatic contributions for a “dilute” system of composite bosons which
form as bound-fermion pairs, by giving appropriate prescriptions for mapping bosonic onto fermionic di-
agrams. We then extrapolate these contributions to the weak-coupling limit and compare them with the
ordinary (Aslamazov-Larkin, Maki-Thompson, and density of states) terms occurring in the theory of su-
perconducting fluctuations for a clean system above the critical temperature. Specifically, we show that in
the strong-coupling limit, at the zeroth order in the diluteness parameter for the composite bosons, the
Aslamazov-Larkin term represents formally the dominant contribution to the density and current response
functions, while the Maki-Thompson and density of states terms are strongly suppressed. Corrections to the
Aslamazov-Larkin term are further identified via the above mapping prescriptions at the next order in the
diluteness parameter for the composite bosons, where the residual mutual interaction appears explicitly.
Numerical comparison of the Aslamazov-Larkin diagram and its leading corrections is presented for a range
of temperature above Tc over the whole coupling region. The spin response function is also examined, and
it is found to be correctly suppressed in the strong-coupling limit only when appropriate sets of diagrams
are considered simultaneously, thus providing a criterion for grouping diagrammatic contributions to the
response functions.

PACS. 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) –
74.20.-z Theories and models of superconducting state – 05.30.Jp Boson systems

1 Introduction

Response functions constitute an essential tool for con-
necting experimentally measurable quantities with the
theoretical description of a condensed-matter system.
Specifically, knowledge of density, current, spin, and heat
response functions allows one to test the relevance of the
degrees of freedom which are selected for an approximate
description of a complex system. In particular, for super-
conductors the current response function plays a special
role since the Meissner effect can be demonstrated by ex-
amining its behavior [1].

Within the standard BCS (weak-coupling) theory, the
transverse current response function below the critical
temperature is represented as a particle-hole bubble in
terms of normal and anomalous single-particle propaga-
tors [1,2]. Above the critical temperature, the noninter-
acting Fermi gas expression is correspondingly obtained,
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with no sign of superconductivity being evidenced when
approaching the transition from above.

In the weak-coupling limit, precursor effects of super-
conductivity above the critical temperature have been con-
sidered, by introducing pairing fluctuations in the Fermi
gas due to the same attractive interaction which is re-
sponsible for the formation of the superconducting state
below the critical temperature. In this way, the so-called
Aslamazov-Larkin (AL) [3], Maki-Thompson (MT) [4], as
well as the density of states (DOS) contributions have
been evaluated and tested against experimental data, for
superconducting samples of reduced dimensionality [5]
and for strongly anisotropic cuprate superconductors in
the overdoped region [6].

No corresponding analysis has, however, been per-
formed in the strong-coupling limit, where composite
bosons form due to the strong fermionic attraction. Pur-
pose of this paper is to provide this analysis, by setting
up a formal classification of the diagrammatic structure
for the response functions that holds specifically in the
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strong-coupling limit. In this way, one is able to cover
the whole interaction range from weak to strong coupling,
by merging the two alternative approaches (holding sepa-
rately in the weak- and strong-coupling regimes) through
the intermediate-coupling region. This merging appears
altogether nontrivial, in that two different small parame-
ters (namely, the Ginzburg and gas diluteness parameters)
control the theory in weak and strong coupling.

The intermediate-coupling region might be specifically
relevant for cuprate superconductors, for which the pairing
is likely to be in an intermediate regime between overlap-
ping Cooper pairs and non-overlapping composite bosons.
In fact, the small value of the (superconducting) coherence
length and the presence of a pseudogap above the criti-
cal temperature in the underdoped region [7,8] have sug-
gested a crossover scenario, from a weak-coupling regime
with Cooper pairs forming and condensing at the critical
temperature within a BCS description, toward a strong-
coupling regime whereby preformed (composite) bosons
exist above the superconducting critical temperature and
Bose-Einstein condense below it [9–15].

In this context, it appears relevant to study how the re-
sponse functions evolve toward the strong-coupling limit,
by specifically examining how the response of the original
Fermi system can be interpreted in terms of the response
of an effective Bose system. This evolution of the response
functions rests on the property that the fluctuation prop-
agator, which constitutes the building block of fluctuation
theory in the weak-coupling limit above the superconduct-
ing critical temperature, acquires the form of the propa-
gator for composite bosons in the strong-coupling limit.

The dominant diagrammatic contributions to the re-
sponse functions in the strong-coupling (bosonic) limit
will be selected by relying on the diluteness condition of
the system (which is automatically satisfied in the strong-
coupling limit [12,13]), in a similar fashion to what was
done in reference [16] for the selection of the fermionic
self-energy. In that reference, the diluteness condition was
exploited to determine the bosonic propagator entering
the fermionic self-energy, where the bosonic propagator
couples with a fermionic propagator. In this paper, we
apply the diluteness condition to the physical response
functions, for which a description in terms of bosons will
naturally emerge in the strong-coupling limit.

Although the above procedure is a priori complemen-
tary to the selection of fluctuation diagrams in the weak-
coupling limit, it yet results into the same diagrams for
the current (and density) response functions as far as the
dominant contribution (over and above the free fermion
contribution) is concerned. Specifically, the AL diagram
turns out to yield the dominant contribution to the current
(and density) response functions both in the weak-coupling
limit (where it represents the main fluctuation effects close
to the critical temperature) and in the strong-coupling
limit (where it corresponds to a free-boson response). Cor-
rections to the AL diagram will also be identified in the
strong-coupling regime at the next-to-leading order in the
diluteness parameter, thus including interaction effects be-
tween composite bosons. Calculation of these corrections

to the response functions will be further implemented nu-
merically to show their relevance in a range of temperature
above Tc.

Besides providing a detailed analysis of the current
(and density) response functions, we will also examine the
spin response function. We shall verify that the diagrams
selected in the strong-coupling limit for the current (and
density) response functions, give an identically vanishing
contribution to the spin response function, since they cor-
respond to spinless (composite) bosons. For obtaining a
non vanishing contribution in the interesting intermediate-
coupling region, therefore, the diagrams for the spin re-
sponse function have to be selected in the weak-coupling
region, paying, however, attention that their contribution
has anyway to vanish in the strong-coupling limit. To this
end, it will be shown how certain diagrammatic contribu-
tions have to be included simultaneously in an appropriate
way.

We shall specifically consider a Fermi system with
an attractive (point-contact) interaction in a three-
dimensional continuum and above the superconducting
critical temperature. No lattice or impurities effects will be
taken into account. Consideration of the broken-symmetry
case below the critical temperature is postponed to future
work.

The plan of the paper is as follows. Section 2 discusses
the current response function at the leading and next-to-
leading order in the diluteness parameter for composite
bosons. Section 3 considers the density and spin response
functions. Section 4 presents the numerical results. Sec-
tion 5 gives our conclusions.

2 Current response function

In this section, we identify the dominant diagrammatic
contributions to the current response function for a system
of fermions with an attractive interparticle interaction in
the strong-coupling limit. The leading contribution turns
out to coincide formally with the AL diagram, occurring in
the standard theory of superconducting fluctuations above
the critical temperature. Next-to-leading diagrams in the
bosonic diluteness parameter are also considered, to in-
clude the effects of the residual interaction between the
composite bosons in the strong-coupling limit. Additional
diagrams (such as the MT and fermionic DOS contribu-
tions), which are usually considered in superconducting
fluctuation theory, are further shown to be irrelevant in
the strong-coupling limit.

The systematic procedure for selecting the contri-
butions to the response functions which are dominant
in the strong-coupling limit rests on certain integrals
(that contain products of fermionic single-particle Green’s
functions) acquiring a particularly simple form in the
strong-coupling limit, and on the standard classification
of bosonic diagrams in the dilute limit [17]. In this way,
the contributions to the response functions are organized
in powers of the diluteness parameter as well as of the (in-
verse of the) fermionic chemical potential. The property
of the fermionic chemical potential of being the largest
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energy scale in the strong-coupling limit, in fact, consid-
erably simplifies dealing with this limit.

The identification of the dominant diagrammatic con-
tributions to the response functions for a system of
fermions in the strong-coupling limit could proceed in two
ways. Either, one may consider all possible fermionic di-
agrams and estimate their relative contributions by rely-
ing on the simplifying features mentioned above; or, one
may start directly from the bosonic diagrams for a system
of true bosons and construct the corresponding diagrams
for composite bosons, where remnants of the underlying
fermionic degrees of freedom explicitly appear. We shall
develop below the latter approach, which has by construc-
tion the advantage of identifying the important contri-
butions to the response functions in the strong-coupling
limit.

Detailed knowledge of the fermionic attractive interac-
tion is not required for studying the evolution from weak
to strong coupling. One may accordingly consider a “con-
tact” potential v0 δ(r), where v0 is a negative constant. A
suitable regularization is required in this case to remove
divergences in the diagrammatic structure. In three di-
mensions, it is common practice to introduce the fermionic
scattering length aF defined via (we set � and Boltzmann’s
constant equal to unity throughout)

m

4πaF
=

1
v0

+
∫

dk
(2π)3

m

k2
, (2.1)

where k is a wave vector and m the fermionic mass.
The ultraviolet divergence on the right-hand side of equa-
tion (2.1) is compensated by letting v0 → 0− in a suitable
way, while keeping aF finite. This is achieved by introduc-
ing an ultraviolet cutoff k0 and choosing v0 such that [16]

v0 = − 2π2

mk0
− π3

maF k2
0

, (2.2)

with k0 → ∞ eventually. The evolution from weak to
strong coupling can thus be tuned by varying the scat-
tering length aF , which is negative in the weak-coupling
regime (where a bound-state has not yet appeared in the
associated two-body problem) and positive in the strong-
coupling (bosonic) regime (where aF coincides with the
bound-state radius).

It was discussed in reference [16] that the explicit
form (2.2) for v0 considerably simplifies the structure
of the associated many-body perturbation theory. It was
shown there that the effects of the interaction survive only
in the particle-particle ladder depicted in Figure 1a, while
connections among different ladders (as well as other links
required to form the fermionic self-energy) are provided
by the fermionic bare single-particle Green’s functions. In
the context of the response functions considered in the
present paper, a current (or density or spin) vertex made
by fermionic single-particle Green’s functions (cf. Fig. 1b)
is further required to connect the external (electromag-
netic) disturbance with the structure of the fermionic two-
particle Green’s function.

Fig. 1. (a) Particle-particle ladder, where full and broken lines
represent fermionic bare single-particle Green’s functions and
interactions, respectively (four-momenta and spin labels are
indicated); (b) Current (or density or spin) vertex connect-
ing the external (electromagnetic) disturbance to the fermionic
two-particle Green’s function.

The general expression of the particle-particle ladder of
Figure 1a for any temperature and value of aF reads [16]:

Γ0(q) = −
{

m

4πaF
+

∫
dk

(2π)3

×
[
1
1

tanh(βξ(k)/2) + tanh(βξ(k − q)/2)
2(ξ(k) + ξ(k − q) − iων)

− m

k2

]}−1

(2.3)

with the four-vector notation q ≡ (q, ων), where q is a
wave vector, ων = 2νπβ−1 (ν integer) a bosonic Mat-
subara frequency, β = 1/T the inverse temperature, and
ξ(k) = k2/(2m)−µ (µ being the fermionic chemical poten-
tial). This expression acquires a particularly simple form
in the strong- and weak-coupling limits.

In the strong-coupling limit, µ approaches the value
−ε0/2 where ε0 = (ma2

F )−1 is the binding energy of the as-
sociated two-body problem. As ε0 increases without bound
in strong coupling, at any finite temperature we may con-
sider the limit βµ → −∞ in equation (2.3), thus obtaining
the polar structure [16]:

Γ0(q) ∼= − 8π

m2aF

1

iων − q2

4m + µB

(2.4)

where µB = 2µ + ε0. Apart from the residue being differ-
ent from unity, this expression has the form of a free prop-
agator for (composite) bosons with mass mB = 2m and
chemical potential µB. Note that equation (2.4) holds pro-
vided |ων | � ε0 and q2/(4m) � ε0, which can be satisfied



164 The European Physical Journal B

for all relevant values of ων and q when ε0 is sufficiently
large.

In the weak-coupling limit, on the other hand, the
chemical potential is (slightly) smaller than the Fermi en-
ergy εF = k2

F /(2m) (kF being the Fermi wave vector) for
temperatures much smaller than εF itself. In this case, the
particle-particle ladder (2.3) acquires the form character-
istic of superconducting fluctuation theory [3]:

Γ0(q) ∼= 1
N0

1
T−Tc

Tc
+ ηq2 + γ|ων |

(2.5)

where N0 is the free-fermion density of states at the Fermi
level (per spin component), (T −Tc) � Tc where Tc is here
the BCS critical temperature, γ = π/(8Tc), and

η =
7 ζ(3)
48 π2

(
kF

mTc

)2

(2.6)

in three dimensions (ζ(3) ≈ 1.202 being the Riemann zeta
function of argument 3).

On physical grounds, one expects the response func-
tions in the strong-coupling limit of the original Fermi sys-
tem to be expressed entirely in terms of composite-boson
structures, namely, bosonic propagators and vertices. As
anticipated in the Introduction, the evolution of the re-
sponse functions from strong to weak coupling discussed
in the present paper rests on the fact that the particle-
particle ladder (which in the strong-coupling limit has the
form (2.4) of a composite-boson propagator) becomes it-
self the building block of fluctuation theory in the weak-
coupling limit (cf. Eq. (2.5)).

Before identifying the relevant bosonic diagrams for
the current response function, it is useful to establish a
procedure to map a given bosonic diagram onto a corre-
sponding set of fermionic diagrams. To this end, we pro-
ceed in a heuristic way and formulate the following pre-
scriptions: (i) Remove from the given bosonic diagram the
two outer vertices representing the bosonic coupling to the
external field, thus obtaining a bosonic diagram “open” at
its ends; (ii) Replace the bare bosonic propagators by the
particle-particle ladders (2.3); (iii) Connect the ensuing
(fermionic) diagram to the fermionic vertex of Figure 1b
representing the fermionic coupling to the external field;
(iv) Connect eventually the remaining dangling ends of
the particle-particle ladders among themselves, in accor-
dance with their spin structure.

In this way, besides the fermionic diagrams which cor-
rectly reproduce the value of the original bosonic diagram
in the strong-coupling limit, additional fermionic diagrams
may result which do not have a bosonic analogue in the
strong-coupling limit and whose value is accordingly sup-
pressed in this limit. These additional diagrams will con-
sistently be dismissed when mapping the original bosonic
diagrams onto the associated fermionic diagrams.

2.1 Leading diagrams

For a system of noninteracting bosons, the current re-
sponse function is depicted diagrammatically in Figure 2a.

Fig. 2. (a) Current response function for an ideal Bose gas
above the Bose-Einstein temperature, where thick lines rep-
resent bosonic bare single-particle Green’s functions; (b)–(c)
Corresponding current response function for a system of com-
posite bosons.

This diagram represents the leading contribution to the
current response function also for a system of bosons in-
teracting via a (repulsive) finite-range potential at suffi-
ciently low density.

With the prescriptions listed above, the fermionic dia-
grams of Figures 2b and c are generated from the bosonic
diagram of Figure 2a, with a degeneracy factor of 2 each,
due to the fermionic spin multiplicity. (An additional di-
agram, which corresponds to a self-energy decoration of
both bare fermionic propagators in the fermionic particle-
hole bubble, is also generated according to the above pre-
scriptions. Since this diagram does not have a bosonic
analogue in the strong-coupling limit, it will not be consid-
ered in the following according to the above discussion.)
Although the two diagrams 2b and c are topologically not
equivalent, their expressions coincide for particle-particle
ladders corresponding to a point-contact potential. We
thus consider only one of these diagrams (say, diagram 2b)
with a multiplicity factor of 4.

This diagram contains two (vector) factors of the type:

J(q, Q) =
1
β

∑
ωn

∫
dk

(2π)3
[2(k + q) + Q]

2m

× G0(−k) G0(k + q) G0(k + q + Q) (2.7)
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where Q ≡ (Q, Ων) and k ≡ (k, ωn) are bosonic and
fermionic four-vectors, respectively, and Go(k) = (iωn −
ξ(k))−1 is a fermionic bare propagator (ωn = (2n+1)πβ−1

(n integer) being a fermionic Matsubara frequency). Sym-
metry arguments show that J(q, Q) is directed along
(2q + Q), allowing us to set

J(q, Q) =
(2q + Q)

2m
C(q, Q) . (2.8)

The (scalar) factor C(q, Q) can be readily evaluated in the
strong-coupling limit for vanishing external four-vector
(Q = 0). In this limit, the Fermi functions originating
from the sum over ωn in equation (2.7) vanish exponen-
tially like exp(−β|µ|), yielding

C(q, Q = 0) ≈ − m3/2

16π

1√
2|µ| (2.9)

at the leading order in |ων/µ| and q2/(2m|µ|). With
these approximations, and using the expression (2.4)
for the particle-particle ladder in the strong-coupling
limit, the value of the diagram of Figure 2b for Q = 0
becomes (the “static” limit with Ων = 0 and Q → 0 is
implied):

χj(Q = 0) ∼= − 4
1

m2

m3

(16π)2
1

2|µ|
(

8π

m2aF

)2

× 1
β

∑
ων

∫
dq

(2π)3
qq(

iων − q2

4m + µB

)2 (2.10)

where the overall minus sign complies with the definition
of the current response function χj , the factor of 4 repre-
sents the degeneracy of the diagram, and the remaining
factors stem from equations (2.9) and (2.4), in the order.
Apart from the degeneracy factor of 4, expression (2.10)
coincides with the Q = 0 limit of the current response
function for a system of (composite) bosons with mass
mB = 2m and chemical potential µB, when for |µ| one uses
the value (2ma2

F )−1 which holds in the strong-coupling
limit. This response function then equals −nB/mB, where
the bosonic density nB = n/2 is half the original fermionic
density n. The degeneracy factor of 4 in equation (2.10)
restores eventually the correct value −n/m for the diago-
nal component of the fermionic current response function,
in accordance with the f-sum rule [18]. This is an explicit
check that the heuristic prescriptions formulated above
lead indeed to a meaningful mapping between bosonic and
fermionc diagrams.

It is also worth noting that, when the expression (2.5)
for the particle-particle ladder (valid in the weak-coupling
limit close to Tc) is used in diagram 2b and the ex-
pression (2.8) is also retained, one recovers the standard
Aslamazov-Larkin contribution to the current response
function [3], which represents the leading fluctuation con-
tribution in the weak-coupling limit. This is a nontrivial
result because the weak- and strong-coupling regimes ad-
mit entirely different classifications schemes based, respec-
tively, on the Ginzburg and diluteness (gas) parameters.

Fig. 3. (a) “Potential” from which the diagrams of Figures 2b
and c are generated by the Baym’s prescriptions; (b)–(d)
Fermionic effective two-particle interaction derived from the
“potential” (a) (with spin labels corresponding to a contact
interaction).

A lowest-order scheme to interpolate between weak
and strong coupling for the current response function
(and thus to address the interesting intermediate-coupling
regime) can thus be set up by considering diagram 2b
together with the fermionic bare particle-hole bubble. In
this way, in the weak-coupling limit one retains the free-
fermion result plus its AL fluctuation correction, while in
the strong-coupling limit one recovers the free-boson re-
sult, which represent the dominant contributions in the
respective limits.

It is worth mentioning that the AL diagrams 2b and 2c
can be obtained also via the Baym’s prescriptions [19], also
using the “potential” depicted in Figure 3a in fermionic
language. Taking two successive functional derivatives
with respect to the fermionic single-particle propagators
(which, in this case, are meant to be self-consistent) yields,
in fact, the fermionic effective two-particle interaction de-
picted in Figures 3b–d, which acts as the kernel of the
Bethe-Salpeter equation for the two-particle Green’s func-
tion. Diagrams 2b and 2c then result by connecting, re-
spectively, diagrams 3(b) and 3(c) with the fermionic ver-
tex of Figure 1b, while connecting diagram 2d with the
fermionic vertex of Figure 1b yields instead the Maki-
Thompson diagram [4], to be considered in Section 2.3.
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Fig. 4. (a) Next-to-leading bosonic diagram in the dilute limit;
(b) Fermionic diagram corresponding to the bosonic diagram a;
(c) Subleading diagram generated from diagram a.

2.2 Next-to-leading diagrams

The leading contribution to the current response function
considered in Section 2.1 corresponds to non-interacting
composite bosons. The residual interaction between com-
posite bosons should, however, play an important role in
the not-too-extreme strong-coupling regime [10,16]. For
this reason, it is relevant to introduce the effects of the
interaction between composite bosons in the physical re-
sponse functions. This leads us to search for nontrivial
corrections to the AL diagram, by examining diagrams of
higher-order in the bosonic diluteness parameter n

1/3
B aB,

where aB is the scattering length associated with the resid-
ual interaction between composite bosons [20].

A bosonic diagram, which is next-to-leading with re-
spect to diagram 2a, is depicted in Figure 4a, where the
dark square in the middle represents a (symmetrized)
bosonic interaction [17]. The presence of an additional
bosonic cycle in diagram 4a with respect to diagram 2(a)
accounts, in fact, for an additional power in the diluteness
parameter for high enough temperature [21]. A further
bosonic diagram of the same order in the diluteness pa-
rameter can be obtained from diagram 2a, by dressing ei-
ther one of the two bosonic propagators with a low-density
self-energy (cf. Fig. 7 below), as in the theory of the inter-
acting dilute Bose system [17]. The physical interplay of
these two diagrams in the context of the density response
function will be addressed in Section 4.

The bosonic diagram of Figure 4a can be mapped
into a corresponding set of diagrams for the fermionic re-

sponse function(s), according to the rules developed in
reference [16] for the interaction vertex and to the heuris-
tic prescriptions stated above. In this way, one ends up
with the two fermionic diagrams of Figs. 4b and c, with
a degeneracy factor of 8 and 4, in the order, having also
taken into account that expressions of topologically not
equivalent diagrams may coincide for a fermionic point-
contact potential. We will verify below that, while dia-
gram 4b has a meaningful strong-coupling limit in terms of
composite-boson propagators, diagram 4c lacks a bosonic
representation and yields consistently a subleading con-
tribution in this limit. For these reasons, one may retain
diagram 4b and disregard diagram 4c to follow the evolu-
tion from strong to weak coupling.

To verify that to diagram 4b there corresponds a mean-
ingful strong-coupling limit, we evaluate the central part
of this diagram for Q = 0 and obtain:

1
β

∑
ωn′′

∫
dk′′

(2π)3
G0(−k′′) G0(k′′ + q′)

× G0(−k′′ + q − q′) G0(k′′ + q′) ≈ (maF )3

16π
(2.11)

where use has been made of the relation 2|µ| ≈ ε0 =
(ma2

F )−1 that holds in this limit. The diagram 4b thus
contains the factors

−
(
−m2aF

8π

)2 (
− 8π

m2aF

)4 (maF )3

16π
= − 4πaF

m
(2.12)

which arise, respectively, from the current vertex (cf.
Eq. (2.9)), from the residue of the particle-particle lad-
der (cf. Eq. (2.4)), and from the expression (2.11), while
the overall minus sign originates from the presence of three
fermionic loops. In this way, the strength

v(0) = 4πaF /m (2.13)

of the residual interaction between composite bosons dis-
cussed in references [12,13] is correctly reconstructed, and
diagram 4b is proved to give a faithful representation of
the bosonic diagram of Figure 4a.

Further, the ratio of diagram 4c to diagram 4b can be
estimated to be of the order

m

aF

(
na3

F

)2

∂n
∂µ

, (2.14)

which is indeed much smaller than unity in the low-density
limit (n1/3

B aB � 1), provided the compressibility (∂n/∂µ)
does not vanish [22].

It is again interesting to mention that diagram 4b
(with a degeneracy factor of 8) can alternatively be ob-
tained in fermionic language by: Considering the fermionic
effective two-particle interaction depicted in Figures 3b
and c to act twice in the two-fermion Green’s function;
Connecting the ensuing four diagrams with the fermionic
vertex of Figure 1b; Recognizing the equivalence of these
four diagrams; Summing eventually over the spin compo-
nents. Diagram 4c, on the other hand is not reducible in
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Fig. 5. (a) Fermionic DOS diagram for the response functions;
(b) Self-energy diagram for a dilute Fermi gas.

the (fermionic) two-particle channel and corresponds to
a choice of the fermionic effective two-particle interaction
different from 3b and 3c.

In this way, we have identified the next-to-leading con-
tributions to the dominant (AL) diagram, which take into
account correlation effects among composite bosons in the
strong-coupling limit.

2.3 Subleading diagrams

We finally consider additional diagrams (besides diagram
4(c) considered in Sect. 2.2) which are subleading in the
strong-coupling limit. A noticeable example is the Maki-
Thompson diagram, which is obtained by connecting the
effective two-particle interaction of Figure 3d with the ex-
ternal coupling of Figure 1b. This diagram has been ex-
tensively studied in the weak-coupling limit in the context
of the theory of superconducting fluctuations [4–6]. Since
this diagram contains only one particle-particle ladder, it
is expected to have no analogue in bosonic language (at
least for the normal phase) and, consequently, not to con-
tribute to the response functions in the strong-coupling
limit. Upon evaluating the MT diagram for the current
response function in the strong-coupling limit at Q = 0,
however, one obtains the finite value n/m (including spin
multiplicity).

This apparent contradiction can be overcome by con-
sidering also the fermionic density of states (DOS) dia-
gram depicted in Figure 5a (with a multiplicity factor
of 4), obtained by making the fermionic self-energy in-
sertion of Figure 5b into the bare fermionic particle-hole
bubble. In the strong-coupling limit, diagram 5(a) gives,
in fact, the contribution −n/m to the Q = 0 current re-
sponse function, thus cancelling exactly the contribution
of the MT diagram [23,24].

This example suggests that diagrams for the response
functions may need to be grouped into suitable sets , in or-
der to get a meaningful strong-coupling limit. The group-
ing procedure appears to be especially relevant for the
spin response function, that ought to vanish in the strong-
coupling limit for spinless composite bosons, as discussed
in the next section.

3 Density and spin response functions

In this section, we complement the description of the
strong-coupling limit by analyzing the density and spin
response functions. We begin by considering the standard
AL, MT, and fermionic DOS diagrams of the theory of su-
perconducting fluctuations [5,6]. We next consider a spe-
cific example to show that a whole set of diagrams needs
be associated with a given subleading diagram, for the
spin response function to be exponentially suppressed in
the strong-coupling limit, as required on physical grounds
for spinless composite bosons.

The contribution to the density response function from
the AL diagram contains two (scalar) factors of the type

D(q, Q) =
1
β

∑
ωn

∫
dk

(2π)3
G0(−k) G0(k + q)

× G0(k + q + Q) , (3.1)

which can be readily evaluated in the strong-coupling limit
for Q = 0, to give

D(q, Q = 0) ≈ − m2aF

8π
· (3.2)

This factor thus cancels the residue of the particle-particle
ladder (2.4) in the strong-coupling limit, yielding for the
density response function the following expression:

χn(Q) ∼= − 4
1
β

∑
ων

∫
dq

(2π)3
1

iων − q2

4m + µB

× 1

iων + iΩν − (q+Q)2

4m + µB

· (3.3)

Here, the minus sign is due to the definition of the den-
sity response function and the factor of 4 accounts for the
degeneracy of the diagram. In the “static” (Ων = 0 and
Q → 0) and “dynamic” (Q = 0 and Ων → 0) limits this
expression correctly produces the values −4∂nB/∂µB =
−∂n/∂µ and 0, in the order.

Concerning the spin response function, the contribu-
tions to χzz from the AL diagrams 2b and 2c cancel
each other identically for all coupling strengths (these
diagrams, on the other hand, do not contribute to χxx

and χyy owing to their spin structure). This is consis-
tent with our previous result that, in the strong-coupling
limit, the AL diagram gives an appropriate description
of a system of composite bosons. One may further verify
that the spin response function vanishes identically also
for the corrections 4b to the AL diagram, a result which
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is also expected since this diagram was selected in the
strong-coupling limit.

The contributions to the (Q = 0) density response
function from the MT diagram 3(d) and the fermionic
DOS diagram 5a do not cancel each other in the strong-
coupling limit, contrary to the case of the current response
function treated in Section 2.3. Rather, each of these di-
agrams gives the same finite contribution −ma2

F nB =
−n/(4|µ|), which however vanishes as |µ| increases in the
strong-coupling limit. In the strong-coupling limit, both
MT and fermionic DOS diagrams are thus irrelevant also
for the density response function.

The contributions to the spin response function χzz

from the MT and fermionic DOS diagrams cancel in-
stead each other for Q = 0 in the strong-coupling limit,
since the MT contribution acquires an extra minus sign
with respect to the DOS contribution. In particular, the
spin response function, obtained by considering these
two diagrams simultaneously, vanishes exponentially like
exp(−β|µ|) when approaching the strong-coupling limit,
due to the behavior of the Fermi functions in this limit.
This is precisely what is expected on physical grounds,
since a non-vanishing contribution to the spin response
for spinless composite bosons should result only when
the temperature is comparable with their binding energy
and the composite bosons break apart. In this context,
it is interesting to mention that the progressive vanishing
of the spin susceptibility upon approaching the strong-
coupling limit has been confirmed by Monte Carlo data
for the negative-U Hubbard model [25], even though the
predicted exponential behavior cannot be fully confirmed
from the limited set of Monte Carlo data.

The above examples concerning the spin response for
the AL, MT, and fermionic DOS diagrams (plus the cor-
rection 4(b) to the AL diagram) suggest that: (i) Dia-
grams selected in the strong-coupling regime according
to the diluteness condition by considering the current re-
sponse function, cannot be used to describe the spin re-
sponse function, since they would yield a vanishing spin
response function for all couplings. This implies that ad-
ditional diagrams have unavoidably to be considered for a
full description of the weak-coupling regime; (ii) These ad-
ditional diagrams introduced in the weak-coupling regime
(for instance, by counting powers of the Ginzburg param-
eter as in the theory of superconducting fluctuations) are
necessarily subleading in the strong-coupling limit, as far
as the current and density response functions are con-
cerned. However, there is a priori no guarantee that they
also result in an exponentially vanishing spin response
function in the strong-coupling limit, as required on phys-
ical grounds. To make sure that this happens, suitable sets
of diagrams need to be grouped in an appropriate way [24].

As a specific example, let us consider diagram 4c,
which we concluded in Section 2.2 to be subleading as far
as the current response is concerned. This diagram alone
yields a contribution to the spin response function which is
not exponentially vanishing in the strong-coupling limit.
Additional diagrams have thus to be associated with di-
agram 4c, to obtain the correct exponential behavior of

Fig. 6. (a)–(b) Diagrams for the thermodynamic potential,
from which the contribution of Figure 4c to the static spin
susceptibility can be derived.

the spin response function in the strong-coupling limit.
To this end, we consider the two contributions to the ther-
modynamic potential depicted schematically in Figures 6a
and b and perform all possible (Q = 0) magnetic-field in-
sertions in the fermionic single-particle propagators, as to
get the “static” spin susceptibility (no additional contri-
butions are obtained by making magnetic-field insertions
inside the particle-particle ladder in the strong-coupling
limit). In this way, two sets of six diagrams each re-
sult, which include, by construction, diagram 4c (counted
twice, due to the equivalence of two diagrams for the case
of a point-contact potential) plus decorations of the AL,
MT, and fermionic DOS diagrams. In the strong-coupling
limit (when all terms proportional to the Fermi functions
are exponentially suppressed), it can indeed be shown that
the contributions to the spin response function χzz from
the six diagrams obtained from Figure 6a (as well from
the six diagrams obtained from Fig. 6b) add up to zero.

To summarize, we have argued that diagrams which
have a meaningful strong-coupling limit as far as the cur-
rent and density response are concerned, yield an identi-
cally vanishing contribution to the spin response function.
Other diagrams that do not have a meaningful strong-
coupling limit, on the other hand, give contributions to the
spin response function in the strong-coupling limit which
instead vanish exponentially like exp(−β|µ|) in the cor-
rect way, provided these diagrams are grouped into suit-
able sets, as shown explicitly by the examples considered
above.
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Fig. 7. (a) Density response function for an ideal Bose gas
corrected by a self-energy insertion; (b) Corresponding density
response function for a system of composite bosons made up
of fermion pairs.

4 Numerical results

Having discussed on general grounds the diagrams that
are relevant when addressing density, spin, and current
response functions, in this section we investigate numeri-
cally the temperature dependence of the leading and sub-
leading contributions to the density response function χn

in the “static” limit. This calculation is meant to provide
us with a typical example for the relative contributions of
higher-order diagrams with respect to the leading one.

Specifically, we shall consider three contributions to
the density response function χn, namely: (i) The density
analogue of the AL diagram of Figure 2b, that we shall
call AL1 for convenience; (ii) The density analogue of its
leading correction of Figure 4b, that we shall call AL2
accordingly; (iii) The diagram of Figure 7b, which is de-
rived [16] from the bosonic diagram of Figure 7a (with a
degeneracy factor of 8), and which we shall call DOS2 as
it represents the bosonic analogue of the fermionic DOS
diagram of Figure 5a. As anticipated in Section 2.2, the
two contributions AL2 and DOS2 are expected to be of the
same order beyond AL1, for sufficiently large temperature
above Tc.

These three contributions will be evaluated as a
function of temperature above Tc for three representa-
tive values of the coupling strength (kF aF )−1 (namely,
1.33, 0.35,−0.40), which are in the strong-, intermediate-,
and weak-coupling regions, respectively. As the calculation
proves to be altogether nontrivial, it will be schematically
described in the following.

For given value of the coupling strength (kF aF )−1, the
input parameters Tc and µ(T ) to be used in the calculation
are obtained according to the procedure described in refer-

ence [26]. Thus, the Thouless criterion Γ0(q = 0)−1 = 0 in
terms of the particle-particle ladder (2.3) is supplemented
by the density equation relating the chemical potential
µ(T ) to the density. In this way, Tc evolves from the BCS
value in weak coupling to the Bose-Einstein temperature
in strong coupling.

The contributions AL1, AL2, and DOS2 can be ex-
pressed in terms of three basic ingredients, namely, the
particle-particle ladder Γ0 of equation (2.3), the three-
fermion vertex

v(q) =
1
β

∑
ωn

∫
dk

(2π)3
G0(k + q)2 G0(−k) , (4.1)

and the four-fermion vertex

u(q1, q2) =
1
β

∑
ωn

∫
dk

(2π)3
G0(−k)2 G0(k + q1)G0(k + q2) .

(4.2)

For instance, the contribution DOS2 to χn is obtained as
follows:

χ(DOS2) =
1
β2

∑
ων1 ων2

∫
dq1

(2π)3

∫
dq2

(2π)3

× Γ0(q1)3 v(q1)2u(q1, q2) Γ0(q2) . (4.3)

Here, the Matsubara sums contained in the terms v
(Eq. (4.1)) and u (Eq. (4.2)) can be performed ana-
lytically. The remaining two Matsubara sums of equa-
tion (4.3) and the wave-vector integrals have instead to
be performed numerically. The nested structure of the
wave-vector integrals poses considerable numerical prob-
lems, since the integrals extending formally over an infi-
nite range must in practice be truncated at some cutoff, so
that the convergence of each individual integral depends
on the convergence of others. In addition, there occurs
a number of singularities (hidden mostly in the vertex
u of equation (4.2)), which (albeit formally integrable)
might in practice invalidate the whole numerical calcula-
tion. This divergence problem becomes apparent when the
integrand of u is written in the following form (after the
analytic sum over ωn has been performed):

f ′(−ξ(k))
A(k, q1)B(k, q2)

+
1

A2(k, q1)

[
f(−ξ(k))
B(k, q2)

+
f(ξ(k + q1))
C(k, q1, q2)

]

+
1

B2(k, q1)

[
f(−ξ(k))
A(k, q2)

− f(ξ(k + q2))
C(k, q1, q2)

]
. (4.4)

Here, A(k, q1) = ξ(k + q1) + ξ(k) − i Ω1, B(k, q2) =
ξ(k + q2) + ξ(k) − i Ω2, C(k, q1, q2) = ξ(k + q1) −
ξ(k + q2) − i (Ω1 − Ω2), and f is the Fermi distribution.
A divergence clearly appears in the third and fifth terms
of the expression (4.4) when q1 = q2 and Ω1 = Ω2, since
C = 0 in this case irrespective of k. In addition, when
q1 = q2 and Ω1 = Ω2 = 0, A and B could also vanish
depending on the values of k and µ. Other possibilities
further occur, for a total of eight possible cases for which
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terms of the expression (4.4) can individually diverge. Al-
though these singularities eventually cancel each other,
yielding a finite result, the numerical problem when ap-
proaching these singular values is evident.

An additional numerical problem concerns the intrin-
sic time scale of the calculation, that can be considerably
large (of the order of one day for each data point reported
in the following Figures 8–10 when a PC equipped with a
single 1-Ghz Pentium III processor is used). To reduce this
time scale considerably, besides making use of symmetry
properties such as

u(q1, q2) = u(q2, q1) (4.5)

and

u(−q1,−q2) = u(q1, q2)∗ , (4.6)

we have resorted to parallel computation on a Beowulf
cluster with 8 1-Ghz Pentium III processors. In this
way, the typical values to obtain each data point in Fig-
ures 8–10 has been approximately reduced to three to four
hours.

The slow convergence of frequency sums and wave-
vector integrals, related to the introduction of cutoffs as
discussed above, has been dealt with as follows. Consider,
for instance, a frequency sum which is conveniently cut
at an upper frequency ω̄. The remaining contribution for
ω > ω̄ can be calculated by transforming it into an inte-
gral:

1
β

∑
ων>ω̄

F (q, ων) →
∫ ∞

ω̄

dω

2π
F (q, ω) . (4.7)

The ensuing improper integral can then be evaluated nu-
merically using the mapping ω → 1/ω, that transforms
the improper integral into a proper one extending from
ω = 0 to ω = 1/ω̄. The same procedure can be applied to
the wave-vector integrals as well. With this procedure, the
dependence of the frequency sums and wave-vector inte-
grals on the cutoff turns out to be much less critical than
before.

Facing the divergence problem as in the expres-
sion (4.4), on the other hand, requires us to trade accuracy
with velocity. Whenever possible, the divergences are lo-
cated analytically and in the evaluation of the integral a
small portion of the integration domain is excluded.

Finally, we mention that the DOS2 diagram suffers
from an additional slow convergence when the factors Γ0

are summed over ων1 and ων2 (cf. Eq. (4.3)). This problem
has been suitably alleviated by computing the frequency
tail via the transformation ω → 1/ω2.

During code development, steps of the calculation were
confronted (whenever possible) with analytic results that
can be obtained in the strong-coupling limit, where the
limiting forms of Γ0, v, and u hold (cf., e.g., Eqs. (2.4)
and (2.11). For example, in the strong-coupling the DOS2

Fig. 8. Static limit of the density response function (in units of
kF m) vs. T/Tc for (kF aF )−1 = 1.33 (strong-coupling regime)
corresponding to diagrams AL1 (×), AL2 (•), and DOS2 (�).
In this case, Tc/ε0 = 0.065. The lines are guides to the eye and
connect also points not shown in the graph. The inset shows
the corresponding chemical potential (in units of ε0) vs. T/Tc.

diagram has the factorized quadrature form

aF β2

2mπ3

∫
q2 dq

eβ ξb(q) − 1

×
∫

q2 dq

tanh(β ξb(q)
2 ) sinh2(β ξb(q)

2 )
, (4.8)

that has been explicitly used for checks, where ξb(q) =
q2/(4mB)−µB is the bosonic dispersion. In addition, ex-
ternal wave-vector integrations have been cutoff at large
enough values such that the tails of the integrand proved
irrelevant. The integrations were eventually performed
over a mesh containing a number of points providing bal-
ance between numerical stabilization of the double integral
and an affordable computation time scale.

The results of the numerical calculations are reported
in Figures 8–10. Here, the static value χn of the density
response function corresponding to the three contributions
AL1 (crosses), AL2 (full dots), and DOS2 (triangles) is
plotted as a function of temperature above Tc for the three
chosen values of the coupling strength (kF aF )−1, each one
representative of the coupling regimes of interest.

Note that all three plots of χn vs. T/Tc show essen-
tially the same pattern. Above a characteristic tempera-
ture that depends on (kF aF )−1, AL1 becomes dominant
over AL2 and DOS2, which in turn are comparable to each
other, as anticipated when selecting the corresponding dia-
grams. One could identify this characteristic temperature
as a kind of Ginzburg temperature TG, since below TG

critical fluctuations become important and the perturba-
tive (low-density) analysis presented in this paper breaks
down. Below TG, in fact, the contributions AL2 and DOS2
dominate over AL1, as Figures 8–10 show.

Note further that all three contributions diverge upon
approaching Tc for any coupling. This divergence origi-
nates from the zero-frequency and low wave-vector struc-
ture of Γ0(q) ∼ (q2+r)−1, where r is a function of T
that vanishes at T = Tc. The degree of divergence of each
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Fig. 9. Same as Figure 8 for (kF aF )−1 = 0.35 (intermediate-
coupling regime). In this case, Tc/ε0 = 1.07.

Fig. 10. Same as Figure 8 for (kF aF )−1 = −0.40 (weak-
coupling regime). In this case, Tc/εF = 0.19. The inset shows
the corresponding chemical potential (now in units of εF ) vs.
T/Tc.

diagram can be thus estimated by singling out the zero-
frequency term from the frequency sum, whenever this
term yields an infrared-divergent wave-vector integration.
In this way, one obtains AL1 ∼ r−1/2, AL2 ∼ r−1, and
DOS2 ∼ r−3/2. These degrees of divergence, which are
valid for any coupling, are indeed confirmed by the nu-
merical results reported in Figures 8–10.

On similar grounds, an analytic estimate of TG can
be obtained in the strong-coupling regime, with the same
approximation for ∂n/∂µ used for equation (2.14) [22].
In this regime, when T � Tc, estimates of AL1, AL2,
and DOS2 give, respectively,( nB

1.63

) 1
(T − Tc)

, (4.9)

v(0)
( nB

1.63

)2 1
(T − Tc)2

, (4.10)

and

v(0)
Tc

3

( nB

1.63

)2 1
(T − Tc)3

, (4.11)

where v(0) is defined by equation (2.13). Note that the
degrees of divergence upon approaching Tc are in agree-
ment with the previous discussion. Defining T a

1 as the

temperature where AL1 equals AL2, from equations (4.9)
and (4.10) it follows that

T a
1 − Tc

Tc
= 2.33 n

1/3
B aB, (4.12)

in accordance with the estimate of the Ginzburg tem-
perature TG for a “dilute” Bose gas obtained in refer-
ence [21]. For (kF aF )−1 = 1.33, n

1/3
B aB = 0.39 and

T a
1 /Tc = 1.91, in good agreement with the numerical es-

timate T n
1 /Tc � 2.00 extracted from the data of Figure 8.

In a similar way, defining T a
2 as the temperature where

AL1 equals DOS2, from equations (4.9) and (4.11) it fol-
lows that

(
T a

2 − Tc

Tc

)2

= 0.78 n
1/3
B aB. (4.13)

For (kF aF )−1 = 1.33, one finds T a
2 /Tc = 1.55, again in

agreement with the numerical estimate T n
2 /Tc � 1.80 ex-

tracted from the data of Figure 8.
Equations (4.9–4.11) can also be used to estimate the

ratios of DOS2 to AL2 and of AL2 to AL1 at a given
temperature T � Tc. For example, when T � 2Tc the
ratio of DOS2 to AL2 is estimated to be about 0.33, a
value not too far from the numerical value 0.65 obtained
from the data of Figure 8. In the same way, the ratio of
AL2 to AL1 is estimated to be 2.33 n

1/3
B aB, that gives the

value 0.9 when (kF aF )−1 = 1.33, in agreement with the
numerical result 0.97 obtained from the data of Figure 8.

Finally, it is interesting to compare TG thus ob-
tained with the pseudogap crossover temperature T ∗

0 cal-
culated in reference [26] (cf. Fig. 10 therein). While TG

and T ∗
0 essentially coincide in weak coupling, for larger

coupling the two temperatures become well separated.
For instance, already at the intermediate-coupling value
(kF aF )−1 = 0.35 our plots show TG � 1.5Tc while from
reference [26] T ∗

0 � 4Tc, with the ratio T ∗
0 /TG becom-

ing even larger at stronger coupling. We thus conclude
that, in the intermediate-to-strong-coupling regime, our
low-density analysis is applicable in a physically interest-
ing temperature range where pseudogap effects are im-
portant and yet critical fluctuations are negligible. On the
other hand, in weak coupling the critical and pseudogap
regions seem to coincide, thus invalidating in practice any
diagrammatic approach in the temperature range of phys-
ical interest.

5 Discussion and concluding remarks

In this paper, we have examined the evolution from weak
to strong coupling of the response functions for a three di-
mensional (clean) Fermi system with an attractive inter-
action above its critical temperature. While in the weak-
coupling limit the standard analysis of superconducting
fluctuations applies, we have shown that in the strong-
coupling limit the original fermionic response functions
become identical to the response functions of a system
of composite bosons. We have, in fact, verified that only
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those fermionic diagrams, to which there corresponds a
meaningful representation in terms of composite bosons,
contribute to the strong-coupling limit. The AL, MT, and
fermionic DOS diagrams of superconducting fluctuation
theory have been analyzed among others. We have also
argued that the analysis of the spin response function may
serve as a constraint to select sets of diagrams for the cur-
rent and density response functions, which are relevant for
weak coupling but are suppressed for strong coupling.

It is evident from our analysis that many diagrams
contributing to the weak-coupling limit are suppressed in
the strong-coupling limit. Consistently, by selecting the
relevant diagrams for the response functions starting only
from the strong-coupling limit, one might miss important
contributions to the weak-coupling limit. For this reason,
our analysis in the strong-coupling limit must be supple-
mented by the standard criterion of superconducting fluc-
tuation theory for selecting suitable sets of diagrams in
the weak-coupling limit. This is especially true for the spin
response function, which vanishes for a system of spinless
bosons. Extrapolating to the weak-coupling limit only di-
agrams which contribute in the bosonic limit to the cur-
rent and density response functions, would in fact result
into a vanishing spin response function for all coupling
strengths.

Controlling the two (weak- and strong-coupling) lim-
its separately may prove especially important for de-
scribing the intermediate (crossover) region, for which no
controlled theory can be specifically formulated. One rea-
sonable strategy to approach the crossover region is then
to interpolate between two theories which are controlled,
respectively, in the weak- and strong-coupling limits; this
can be done by including all dominant diagrams in ei-
ther one of the two limits and then evaluating them over
the whole coupling range. This contrasts somewhat with
what was found in reference [16] for the fermionic self-
energy, for which a single approximation selected in the
strong-coupling regime proved also sufficient to describe
the weak-coupling region. For the response functions, at
the leading order one may thus include the AL diagram
(which is dominant both in the strong- and weak-coupling
limits) plus the MT and fermionic DOS diagrams (which
are relevant to the weak-coupling limit but are strongly
suppressed in the strong-coupling limit). At the next-to-
leading order, the effect of the residual interaction between
composite bosons can be included considering the correc-
tions to the AL diagrams discussed in Section 2.2, as well
as the bosonic DOS diagram of Figure 7.

In this context, it is interesting to comment on the
results reported in reference [27] regarding the tempera-
ture dependence of the density and spin susceptibilities for
a two-dimensional negative-U Hubbard model, calculated
via the AL, MT, and fermionic DOS diagrams, and then
compared with available Monte Carlo results for U = −4t
(t being the nearest-neighbor hopping). These authors find
a remarkable agreement between their calculation and the
Monte Carlo data for the spin susceptibility, provided the
mass term in the particle-particle ladder (2.5) is replaced
by a mass term with the characteristic temperature de-

pendence of the Kosterlitz-Thouless theory (a replacement
that should amount to inserting self-energy corrections in
the bosonic propagators of the AL diagram). For the den-
sity susceptibility, however, this replacement alone proved
not sufficient to reproduce the Monte Carlo data. The
discussion presented in Section 2.2 indeed suggests that
modifications of the AL diagram obtained by considering
bosonic self-energy corrections to the particle-particle lad-
der (cf. Fig. 7) should also be accompanied by the inclu-
sion of an additional diagram (namely, diagram 4b for the
density response function), which in the strong-coupling
limit accounts for the residual bosonic interaction at the
same order in the diluteness parameter for sufficiently
high temperature. Our numerical calculations reported in
Section 4 have indeed confirmed this expectation.

In this paper, we have considered the response func-
tions in the normal phase above the critical temperature.
It would certainly be interesting to extend this analysis
below the superconducting critical temperature and study
the continuous evolution of the response functions from
the weak-coupling limit of (BCS) superconductivity to
the strong-coupling limit where Bose-Einstein condensa-
tion takes place. In this case, a description in terms of
Bogoliubov quasi-particles may be appropriate for a dilute
system of composite bosons (at least close to zero temper-
ature), with the superfluid density being affected at finite
temperature by sound modes in the strong-coupling limit
and by pair-breaking effects in the weak-coupling limit.
Which of these two effects dominate in the intermediate
(crossover) region is a challenging question, which can be
addressed only by numerical calculations of suitable sets
of diagrams. Work along these lines is in progress [28].

The authors are indebted to C. Castellani, A. Perali, and A.
Varlamov for helpful discussions. Partial financial support from
the Italian MIUR under contract Cofin/PRIN 1999 is grate-
fully acknowledged.
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